/(b+d+…+n)=a/b
86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成
比例
87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得
的应线段成比例
88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线
段成比例,那么这条直线平行于三角形的第三边
89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的
三边与原三角形三边对应成比例
90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,
所构成的三角形与原三角形相似
91 相似三角形判定定理 1 两角对应相等,两三角形相似(ASA)
92
直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93 判定定理 2
两边对应成比例且夹角相等,两三角形相似(SAS)
94 判定定理 3 三边对应成比例,两三角形相似(SSS)
95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的
斜边和一条直角边对应成比例,那么这两个直角三角形相似
96 性质定理 1 相似三角形对应高的比,对应中线的比与对应角平分线的
比都等于相似比
97 性质定理 2 相似三角形周长的比等于相似比
98 性质定理 3
相似三角形面积的比等于相似比的平方
99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的
余角的正弦值
100 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的
余角的正切值
101 圆是定点的距离等于定长的点的集合
102
圆的内部可以看作是圆心的距离小于半径的点的集合
103 圆的外部可以看作是圆心的距离大于半径的点的集合
104
同圆或等圆的半径相等
105 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
106
和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线
107
到已知角的两边距离相等的点的轨迹,是这个角的平分线
108 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等