关于高三数学基础知识汇总(3)

总结心得2018-10-27李一老师

5翻转变换:

ⅰ———右不动,右向左翻(在左侧图象去掉);

ⅱ———上不动,下向上翻(||在下面无图象);

11.函数图象(曲线)对称性的证明

(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

(2)证明函数与图象的对称性,即证明图象上任意点关于对称中心(对称轴)的对称点在的图象上,反之亦然;

注:

①曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;

②曲线C1:f(x,y)=0关于直线x=a的对称曲线C2方程为:f(2a-x,y)=0;

③曲线C1:f(x,y)=0,关于y=x+a(或y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

④f(a+x)=f(b-x)(x∈R)y=f(x)图像关于直线x=对称;

特别地:f(a+x)=f(a-x)(x∈R)y=f(x)图像关于直线x=a对称;

⑤函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;

12.函数零点的求法:

⑴直接法(求的根);⑵图象法;⑶二分法.

13.导数

⑴导数定义:f(x)在点x0处的导数记作;

⑵常见函数的导数公式:①;②;③;

④;⑤;⑥;⑦;

⑧。

⑶导数的四则运算法则:

⑷(理科)复合函数的导数:

⑸导数的应用:

①利用导数求切线:注意:ⅰ所给点是切点吗?ⅱ所求的是“在”还是“过”该点的切线?

②利用导数判断函数单调性:

ⅰ是增函数;ⅱ为减函数;

ⅲ为常数;

③利用导数求极值:ⅰ求导数;ⅱ求方程的根;ⅲ列表得极值。

④利用导数最大值与最小值:ⅰ求的极值;ⅱ求区间端点值(如果有);ⅲ得最值。

14.(理科)定积分

⑴定积分的定义:

⑵定积分的性质:①(常数);

②;

③(其中。

⑶微积分基本定理(牛顿—莱布尼兹公式):

⑷定积分的应用:①求曲边梯形的面积:;

相关推荐

猜你喜欢

大家正在看

换一换