数学家祖冲之手抄报资料(2)

数学手抄报2018-12-15三水老师

。为了纪念祖氏父子发现这一原理的重大贡献,数学上也称这一原理为“祖原理”。

祖冲之在数学领域的成就,只是中国古代数学成就的一个方面。实际上,14世纪以前中国一直是世界上数学最为发达的国家之一。比如几何中的勾股定理,在中国早期的数学专著《周髀算经》(大约于公元前2世纪成书)中即有论述;成书于公元1世纪的另一本重要的数学专著《九章算术》,在世界数学史上最早提出负数概念及正负数加减法法则;13世纪时,中国就已经有了十次方程的解法,而直到16世纪,欧洲才提出三次方程的解法。

三、数学家:祖冲之的故事

五岁的时候,祖冲之的父亲想教他念古文,可他的背诵效率不高,这令父亲十分生气,但父亲不知道的是,祖冲之对数学与天文感兴趣。

一天,老师教大家说:“圆周是直径的三倍。”祖冲之回到家中。越想越不对劲。第二天一大早,他就拿了一根绳子来到路边,这时,来了一辆马车,祖冲之立马跑上去,问:“老爷爷,请让我量一量你的车吧!”。老人点点头默认了。祖冲之先用绳子量了一下车轮又将绳子折成三段,量车轮的直径,经过那么一量,他感到车轮的直径没有三分之一的圆周长。他又量了不同车子的车轮,得出的结果一模一样,这是为什么呐?经过多年的学习,他得知了另一位伟大数学家刘徽的割圆法,割圆法就是在圆内画出一个正六边形,他的边长等于半径,继续分成12边型,用勾股定理算出他的边长,再24,48……边形,一直分,所得多边形各边长之和是圆周长。

祖冲之的儿子已经十三岁,他当了祖冲之的助手,由于刘微只求到96边,只得出3.14的结果,祖冲之决定重新算下去。他准备了许多小竹棍作计算工具,画了个直径一丈的大圆,在圆内画了六边形。父子俩废寝忘食,刻苦计算了好几天才达到96边,结果比刘微少了一点点。儿子对祖冲之说:“我们算得那么仔细,一定错不了,是刘微错了吧”。祖冲之摇摇头:“推翻要有依据”。俩人又重新计算一遍,结果和刘微一样。

祖冲之一直算到24567边形,知道无法计算,只好停止。得出的结果是圆周率大于3.1415926,小于3.1415927.

祖冲之的发现,比

相关推荐

猜你喜欢

大家正在看

换一换