17.设 分别为椭圆 的焦点,点 在椭圆上,若 ;则点 的坐标是 .
三、解答题;本大题共5小题,共72分。解答应写出文字说明、证明过程或演算步骤。
(18)(本题满分14分)在 中,角 所对的边分别为a,b,c.
已知 且 .
(Ⅰ)当 时,求 的值;
(Ⅱ)若角 为锐角,求p的取值范围;
(19)(本题满分14分)已知公差不为0的等差数列 的首项 为 ( ∈R)设数列的和 成等比数列。
(Ⅰ)求数列 的通项公式及
(Ⅱ)记A= + + +…+ · β·= + + 当 ≥2时,试比较A与B的大小
(20)(本题满分15分)如图,在三棱P-ABC中,AB=AC,D为BC的中点,
PO⊥平面ABC,垂足O落在线段AD上,已知BC=8,PO=4,AO=3,OD=2
(Ⅰ)证明:AP⊥BC;
(Ⅱ)在线段AP上是否存在点M,使得二面角A-MC-β为直二面角?若存在,求出AM的长;若不存在,请说明理由。
(21)(本题满分15分)已知抛物线 = = ,圆 的圆心为点M
(Ⅰ)求点M到抛物线 的准线的距离;
(Ⅱ)已知点P是抛物线 上一点(异于原点),过点P作圆 的两条切线,交抛物线 于A,B两点,若过M,P两点的直线 垂足于AB,求直线 的方程
(22)(本题满分14分)设函数 = , ∈R
(Ⅰ)若 = 为 的极值点,求实数 ;
(Ⅱ)求实数 的取值范围,使得对任意的 ∈(0,3 ],恒有 ≤4 成立
注: 为自然对数的底数。