问题。
思考:我们是否存在一种偏见:轻视直观、图示表征,喜欢用数字、规律、程序等代数化的表征的方法来解决问题,认为这些方法才是最简单最优化的方法。当前的解决问题的教学,教师们都意识到方法多样化的必要性,但紧接着的算法最优化是否又将算法多样化的给抹杀了,通常情况下,直观的、不够数学化的方法会被教师忽视,教师引导学生对解决问题的策略进行筛选,通常情况下,教师引导孩子们比较方法时,总是青睐用推理逻辑严密,列式简洁明了的解决问题的方法,并推荐给孩子,这一做法否会让孩子产生一种想法,认为方法有好坏。造成后果就是只要列不出式子来解决问题,孩子们就认为这个问题太难,自己无法解决,很多孩子宁愿放弃寻求问题的解决方法,也不愿再去尝试其他的方法。即使是头脑中有了一些想法,也觉得自己的方法不是好方法,不敢大胆的表达,最终选择了放弃。
课堂中的这样一个片段,让我更加确信教师对解题策略的态度对孩子的影响力之大,北师大版教材五年级上册《梯形的面积》一课,一位教师出了这样一道练习:王大伯家在围墙边围起了一道梯形的篱笆墙,篱笆的长度是55米,其中一边篱笆长15米,求篱笆围出的梯形的面积。如图: (图片略)
课内,教师先引导学生分析题中已知条件和问题,让学生小组讨论该怎样解决问题,然后请学生展示自己的方法。
学生1:“梯形的面积等于上底加下底的和乘高除以2,我用55米减高15米,刚好等于上下底的和,然后乘15除以2就得到面积225平凡米。”
学生1分析得头头是道,推理逻辑严密,列式简洁明了。教师也不吝赞美之词,大力肯定了学生的方法。
师:“还有没有不同的想法?”
学生2:“我是猜出来的,三条边的长度是55米,有一条是15米,我看图,一条和15米的差不多长,我就当它是15米,一条长很多,我猜长的是25米,加起来刚好55米,然后我用公式算出梯形的面积是225平方米。”
生2说完神色喜悦,我想他正为自己能够想出办法来解决这个问题而沾沾自喜,等待老师的表扬,多可爱的孩子啊!
师:“同学们喜欢哪种方法?”
生;“第一种。”
师:“为什么?”
生;“因